求(1+y2)dx-x2(1+x2)ydy=0的通解

2025-02-23 05:50:04
推荐回答(1个)
回答1:

(1+y²)dx-x²(1+x²)ydy=0
(1+y²)dx-1/2*x²(1+x²)d(y²)=0
令u=y²,那么(1+u)dx=1/2*x²(1+x²)du
∴2dx/[x²(1+x²)]=du/(1+u)
2[1/x²dx-1/(1+x²)dx]=d(1+u)/(1+u)
两边同时积分,得:2(-1/x-arctanx)=ln(1+u)+C
即ln(1+u)+2arctanx+(2/x)+C=0
也即:ln(1+y²)+2arctanx+(2/x)+C=0

望采纳