根据任意角三角函数算有诱导公式:
cos(180°-α)=cos(-α)所以cos120°=cos(180°-60°)=-cos60°=-0.5
因为表示120°的角的终边在第二象限,所以它的余弦值是负数。
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
扩展资料:
一、常用的诱导公式
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα.
cos(-α)=cosα.
tan(-α)=-tanα.
cot(-α)=-cotα.
sec(-α)=secα.
csc (-α)=-cscα.
二、角度制下的角的表示:
sin(180°-α)=sinα.
cos(180°-α)=-cosα.
tan(180°-α)=-tanα.
cot(180°-α)=-cotα.
sec(180°-α)=-secα.
csc(180°-α)=cscα.
参考资料来源:百度百科-诱导公式
参考资料来源:百度百科-余弦函数
cos120°=-0.5,计算过程:
根据任意角三角函数算诱导公式cos(180°-α)=cos(-α)
所以cos120°=cos(180°-60°)=-cos60°=-0.5
因为表示120°的角的终边在第二象限,所以余弦值是负数。
扩展资料:
三角函数倍角公式:
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))
三角函数诱导公式
1、(-α)=-sinα、cos(-α)=cosα
2、tan(—a)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、sin(π/2+α)=cosα
3、3cos(π/2+α)=-sinα
4、(π-α)=sinα、cos(π-α)=-cosα
5、5tanA=sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
=cos(180-60)
=-cos(60)
=-0.5
=cos(π-60)=-cos60=-1/2
cos120=-cos60