x(x+1)(x+2)(x+3)=1680
[x(x+3)][(x+1)(x+2)]=1680
[x^2+3x][x^2+3x+2]=1680
设t=x^2+3x,则:
t(t+2)=1680
t^2+2t-1680=0
解得t=40或t=-42
当t=40时,x^2+3x=40即x^2+3x-40=0解得x=5或x=-8
当t=-42时 x^2+3x=-42即x^2+3x+42=0无解
所以x=5或-8
(x+1)(x+2)(x+3)=1680
[x(x+3)][(x+1)(x+2)]=1680
(x²+3x)(x²+3x+2)=1680
(x²+3x)²+2(x²+3x)-1680=0
(x²+3x+42)(x²+3x-40)=0
(x²+3x+42)(x+8)(x-5)=0(x²+3x+42>0)
(x+8)(x-5)=0
x=-8或x=5
通过观察x必有:3
x=4时,4*5*6*7=840;
x=5时,5*6*7*8=1680;
所以x=5.