已知关于x的一元二次方程x²-6x+m+4=0,有两个实数根x₁,x₂;(1)若x₁,x₂ 满足
3x₁=|x₂|+2, 求m的值;
解:x₁+x₂=6............①; x₁x₂=m+4.............②;
当x₂≧0时有3x₁=x₂+2,即x₂=3x₁-2;代入①式得 4x₁-2=6,故x₁=2;x₂=4;
代入②式得m=x₁x₂-4=8-4=4;
当x₂<0时有3x₁=-x₂+2,即有x₂=2-3x₁;
代入①式得 2-2x₁=6,故x₁=-2;x₂=8;(舍去,与x₂<0的规定不符);
结论:m=4.
x^2-6x+m+4=0
x1+x2=6 (1)
x1.x2= m+4 (2)
3x1=|x2|+2 (3)
case 1: x2 = 3x1-2
from (1)
x1+x2=6
x1+3x1-2 =6
x1=8/3
x2 =3x1-2 = 8-2 =6
from (2)
x1.x2 = m+4
(8/3)(6) =m+4
16=m+4
m=12
case 2: x2 = -(3x1-2)
from (1)
x1+x2=6
x1-3x1+2 =6
x1=-2
x2 =-3x1+2 = 6+2 =8
from (2)
x1.x2 = m+4
(-2)(8) =m+4
-16=m+4
m=-20
ie
m=12 or -20