x²
+
y²
=
rx
==>
(x
-
r/2)²
+
y²
=
(r/2)²
==>
r
=
rcosθ
这是在y轴右边,与y轴相切的圆形
所以角度范围是有-
π/2到π/2
又由于被积函数关于x轴对称
由对称性,所以∫∫d
=
2∫∫d(上半部分),即角度范围由0到π/2
∫∫
√(r²
-
x²
-
y²)
dxdy
=
∫∫
√(r²
-
r²)
*
r
drdθ
=
2∫(0,π/2)
dθ
∫(0,rcosθ)
√(r²
-
r²)
*
r
dr
=
2∫(0,π/2)
dθ
*
(-
1/2)
*
(2/3)(r²
-
r²)^(3/2)
|(0,rcosθ)
=
(-
2/3)∫(0,π/2)
[(r²
-
r²cos²θ)^(3/2)
-
r³]
dθ
=
(-
2/3)∫(0,π/2)
r³(sin³θ
-
1)
dθ
=
(-
2/3)r³
*
(2!!/3!!
-
π/2),这里用了wallis公式
=
(-
2/3)r³
*
(2/3
-
π/2)
=
(1/3)(π
-
4/3)r³