(1)、
因为∠ACB=∠DCE,所以∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
又因为CA=CB,CD=CE,所以△ACD≌△BCE(SAS)。
(2)、设AD与BC的交点为点G,BE与CD的交点为点H。
由题(1)结论“△ACD≌△BCE”可知∠CAD=∠CBE,∠CDA=∠CEB,
又因为∠AGC=∠BGF,∠CHE=∠FHD,所以△AGC∽△BGF,△CHE∽△FHD,
有AG/CG=BG/FG,CH/EH=FH/DH,且∠AGB=∠CGF,∠CHF=∠EHD,
所以△AGB∽△CGF,△CHF∽△EHD,有∠ABG=∠CFG,∠CFH=∠EDH,
又因为CA=CB,CD=CE,∠ACB=∠DCE,可知等腰△ABC∽等腰△EDC,
有∠CAB=∠CBA=∠CDE=∠CED,所以∠CAB=∠CBA=∠CFG=∠CDE=∠CED=∠CFH,
即CF平分∠AFE。
见下
初中的,你个呆子 ,公式背一下
寻南溪常道士(刘长卿)新年作(刘长卿)