(1+2n-1)*n/2=110*[1-1/2+1/2-1/3+……-1/(n+1)]
=110n/(n+1)
即n^2=110n/(n+1)
n(n^2+n-110)=0
n(n+11)(n-10)=0
n=0(舍),-11(舍),10
综上所述n=10
1+3+5+....+(2n-1)=n^2,1/(1*2)+1/(2*3)+1/(3*4)+....1/[n*(n+1)=1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)=1-1/(n+1)=n/(n+1).所以n^2=110n/(n+1),n=10.