高一数学函数的单调性

点击小图看大图拜托了 各位
2025-02-23 20:44:38
推荐回答(2个)
回答1:

当 a>0 时,f(x)在(0,+∞)上是单调递增的
证明:
设 x1 x2 在(0,+∞)上 且 x1则 f(x1)-f(x2)
=(ax1^2+1)-(ax2^2+1)
=a(x1^2-x2^2)
=a(x1-x2)(x1+x2)
因为 x1>0 x2>0 x10
所以上式<0
即 f(x1)所以函数f(x)当 a>0 时,f(x)在(0,+∞)上是单调递增的

当 a<0 时,f(x)在(0,+∞)上是单调递减的
证明:
设 x1 x2 在(0,+∞)上 且 x1则 f(x1)-f(x2)
=(ax1^2+1)-(ax2^2+1)
=a(x1^2-x2^2)
=a(x1-x2)(x1+x2)
因为 x1>0 x2>0 x1所以上式>0
即 f(x1)>f(x2)
所以函数f(x)当 a<0 时,f(x)在(0,+∞)上是单调递减的

回答2: