解:
a[n]=S[n]-S[n-1]=3/2(a[n]-a[n-1]),得a[n]=3a[n-1]
∴a[n]是等比数列,又a1=S1=3/2(a1-1),解得a1=3
∴a[n]=3^n
考虑a[2n+1]=3^(2n+1)=3*9^n=3*(1+8)^n
用二项式公式展开(1+8)^n(n≥1),除第一项1外,后面各项均能被8整除
故可设(1+8)^n=4k+1 (k=(9^n-1)/4)
∴a[2n+1]=3*(4k+1)=4(3k)+3=b[3k]
∴c[n]=a[2n+1]=3^(2n+1)