an=1/(n+1)(n+3)=1/2[1/(n+1)-1/(n+3)]
S1=a1=1/8
n>1时,Sn=1/2*[1/(1+1)-1/(1+3)+1/(2+1)-1/(2+3)+……+1/(n-1+1)-1/(n-1+3)+1/(n+1)-1/(n+3)]=1/2*[1/(1+1)+1/(2+1)-1/(n-1+3)-1/(n+3)]=1/2*[5/6-1/(n+2)-1/(n+3)]
S代入一些数字,就可以发现规律
2an=2/(n+1)(n+3)=1/(n+1)-1/(n+3)
所以2sn=(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+……+【1/n-1/(n+2)】+【1/(n+1)-1/(n+3)】=1/2+1/3-1/(n+2)-1/(n+3)
所以sn=5/12-1/2(n+2)-1/2(n+3)