错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):
S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)
在(1)的左右两边同时乘上a。得到等式(2)如下:
aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
具体例题
例子:求和Sn=1+3x+5x^2+7x^3+……+(2n-1)·x^(n-1)(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2
当x不等于1时,Sn=1+3x+5x^2+7x^3+……..+(2n-1)·x^(n-1)
所以xSn=x+3x^2+5x^3+7x^4.…….+(2n-1)·x^n
所以两式相减的(1-x)Sn=1+2x【(1+x+x^2+x^3+...+x^(n-2)】-(2n-1)·x^n。
化简得:Sn=(2n-1)·x^(n+1)-(2n+1)·x^n+(1+x)/(1-x)^2
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)=6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和)=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
错位相减法这个在求等比数列求和公式时就用了
Sn=1/2+1/4+1/8+....+1/2^n
两边同时乘以1/21/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)
两式相减1/2Sn=1/2-1/2^(n+1)Sn=1-1/2^n
错位相减法在数列求和中经常用到,要观察它的特点,才能把握
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
举例:
求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
错位相减法
错位相减法
当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;
两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n;
化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2
错位相减法:(适用于是由一个等差数列和一个等比数列组成的数列求和)
eg:
1x2+2x4+3x8+……+nx2的n次方 …… 1式
1x4+2x8+3x16……+(n-1)x2的n次方+ nx2的n+1次方 …2式
1和2相减,得答案.
???你哪里不懂