光学鼠标与机械式鼠标最大的不同之处在于其定位方式不同 。
光学鼠标的工作原理是:在光学鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光学鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。
第二代光学鼠标的原理说来其实很简单:它采用了一种光眼技术,也就是数字光电技术,利用红外线照射鼠标所在物体的表面,然后每隔一定的时间(几毫秒)就做一次快照,接着分析处理两次图片的特性,来决定坐标的移动方向及数值。由于需要对图片进行扫描才能确定鼠标的位移,因此这个扫描的频率就成为衡量光电鼠标的一项重要参数。而这款飞狐鼠标由于采用了明基BenQ独特的“微型光学定位系统”,每秒钟能够发射1500次感光信号来扫描物体表面,取得图像后通过DSP数字信号处理器将每个细微的移动方向与距离迅速而准确地回传。飞狐还拥有高达800DPI的分辨率,使得光标定位更加精准,高速的传感器也可以避免指针的抖动和不规则移动现象,提高瞄准精度。让我们在各种操作环境下都能得心应手。
鼠标的光学传感器对鼠标被放置的表面进行扫描,并以1500次/秒的频率捕捉图像,进行对比,从而确定鼠标的定位。传统光学鼠标使用的光学芯片扫描次数普遍为1500次/秒(所谓扫描次数,即光学定位芯片每秒采集和处理图像的数量),最高只可以追踪14~18英寸/秒的移动速度。鼠标移动速度如果超出此范围,则可能发生光标无法准确定位的情况。而用户使用电脑时,鼠标的移动速度最高可达到30英寸/秒,尤其是在如CS一类的FPS游戏中,这就会产生前文所述的鼠标突然失控的问题。