cosπ/7-cos2π/7+cos3π/7=cosπ/7+cos3π/7+cos5π/7 =(2sinπ/7*cosπ/7+2sinπ/7*cos3π/7+2sinπ/7*cos5π/7)/(2sinπ/7) =[sin2π/7+(sin4π/7-sin2π/7)+(sin6π/7-sin4π/7)]/(2sinπ/7) =(sin6π/7)/(2sinπ/7)=(sinπ/7)/(2sin/π7)=1/2