因为a∈(π/4,3π/4),b∈(0,π/4),所以π/4-π/2<π/4-a<0,5π/4<5π/4+b<3π/2cos(π/4-a)=3/5,sin(5π/4+b)=-12/13则sin(π/4-a)=-4/5,cos(5π/4+b)=-5/13sin(a+b)=-sin(π+a+b)=-sin[-(π/4-a)+(5π/4+b)]=sin(π/4-a)*cos(5π/4+b)-cos(π/4-a)*sin(5π/4+b)=-4/5*(-5/13)-3/5*(-12/13)=56//65