同余定理的定义

2025-02-22 14:32:02
推荐回答(2个)
回答1:


                                   

两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m。

记作:a≡b (mod m),

读作:a同余于b模m,或读作a与b对模m同余,例如26≡2(mod 12)。

定义

设m是大于1的正整数,a、b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余。

显然,有如下事实

(1)若a≡0(mod m),则m|a;

(2)a≡b(mod m)等价于a与b分别用m去除,余数相同。

同余定理 百度百科

回答2:

数学上的记法为:
a≡ b(mod d)
可以看出当n对于同余有三种说法都是等价的,分别为:
(1) a和b是模d同余的.
(2) 存在某个整数n,使得a=b+nd .
(3) d整除a-b.
可以通过换算得出上面三个说法都是正确而且是等价的.