0.7是有理数。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数是整数和分数的集合,整数也可看做是分母为一的分数。
根据有理数的定义,0.7是小数,可以看做是7/10,即整数7和10的比,
所以,0.7是有理数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
与之相对的是无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 例如:圆周率。
参考资料:有理数-百度百科
0.7是有理数。
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。0.7化成分数是:(7/10)
有理数可分为整数和分数也可分为正有理数,0,负有理数.除了无限不循环小数以外的实数统称有理数.英文:rational number读音:yǒu lǐ shù整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式.任何一个有理数都可以在数轴上表示.其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数.这一定义在数的十进制和其他进位制(如二进制)下都适用.数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数.希腊文称为 λογο,原意为成比例的数(rational number),但中文翻译不恰当,逐渐变成有道理的数.无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数.所有有理数的集合表示为Q.
以下都是有理数:
(1)自然数:数0,1,2,3,……叫做自然数。
(2)正整数:+1,+2,+3,……叫做正整数。
(3)整数:正整数、0、负整数统称为整数。
(4)分数:正分数、负分数统称为分数。
(5)奇数:不能被2整除的整数叫做奇数.如-3,-1,1,5等.所有的奇数都可用2n-1或2n+1表示,n为整数。
(6)偶数:能被2整除的整数叫做偶数.如-2,2,4,8等.所有的偶数都可用2n表示,n为整
(7)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等.2是最小的质数。
(8)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等.4是最小的合数.一个合数至少有3个因数。
如3,-98.11,5.72727272……,7/22都是有理数.全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集,即Q?R.相关的内容见数系的扩张。
有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):
①加法的交换律 a+b=b+a;
②加法的结合律 a+(b+c)=(a+b)+c;
③存在数0,使 0+a=a+0=a;
④乘法的交换律 ab=ba;
⑤乘法的结合律 a(bc)=(ab)c;
⑥乘法的分配律 a(b+c)=ab+ac.
0a=0 一个数乘0还等于0.
此外,有理数是一个序域,即在其上存在一个次序关系≤.0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a.由此不难推知,不存在最大的有理数.值得一提的是有理数的名称.有理数。这一名称不免叫人费解,有理数并不比别的数更有道理。事实上,这似乎是一个翻译上的失误.有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是理性的。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了有理数。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的比,与之相对。而无理数,就是不能精确表示为两个整数之比的数,而并非没有道理。
(无理数就是无限不循环小数,π也是其中一个无理数)。
是 有理数就是整数和小数的统称 0.7是小数 也就是有理数
是
无理数:3.5678324635662555..........
有理数:3.8888...............
4.67676767676676767.............
0.7
6.4587
可以被表示成分数的都是有理数
是的,它属于小数,有理数是整数和分数的统称