求cos^2x⼀sin^3x的不定积分。

2025-02-19 06:29:34
推荐回答(2个)
回答1:

简单计算一下即可,答案如图所示

回答2:

∫ cos²x/sin³x dx
= ∫ cot²x * cscx dx
= ∫ (csc²x - 1) * cscx dx
= ∫ csc³x dx - ∫ cscx dx
= ∫ csc³x dx - ln|cscx - cotx|
记A = ∫ csc³x dx = ∫ cscx * csc²x dx = ∫ cscx d(- cotx)
= - cscxcotx + ∫ cotx d(cscx)
= - cscxcotx - ∫ cot²x * cscx dx
= - cscxcotx - ∫ (csc²x - 1) * cscx dx
= - cscxcotx - A + ∫ cscx dx
2A = - cscxcotx + ln|cscx - cotx|
A = (- 1/2)cscxcotx + (1/2)ln|cscx - cotx|
原式 = (- 1/2)cscxcotx - (1/2)ln|cscx - cotx| + C