(Ⅰ)当n=1时,a1=s1=1,当n≥2时,an=sn-sn-1= n2+n 2 - (n?1)2+(n?1) 2 =n,∴数列{an}的通项公式是an=n.(Ⅱ)由(Ⅰ)知,bn=2n+(-1)nn,记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n)= 2(1?22n) 1?2 +n=22n+1+n-2.∴数列{bn}的前2n项和为22n+1+n-2.