在实际分析中,除了需要对单个变量的数据分布情况进行分析外,还需要掌握多个变量在不同取值情况下的数据分布情况,从而进一步深入分析变量之间的相互影响和关系,这种分析就称为交叉列联表分析。 当所观察的现象同时与两个因素有关时,如某种服装的销量受价格和居民收入的影响,某种产品的生产成本受原材料价格和产量的影响等,通过交叉列联表分析,可以较好地反映出这两个因素之间有无关联性及两个因素与所观察现象之间的相关关系。 因此,数据交叉列联表分析主要包括两个基本任务:一是根据收集的样本数据,产生二维或多维交叉列联表;二是在交叉列联表的基础上,对两个变量间是否存在相关性进行检验。要获得变量之间的相关性,仅仅靠描述性统计的数据是不够的,还需要借助一些表示变量间相关程度的统计量和一些非参数检验的方法。 常用的衡量变量间相关程度的统计量是简单相关系数,但在交叉列联表分析中,由于行列变量往往不是连续变量,不符合计算简单相关系数的前提条件。因此,需要根据变量的性质选择其他的相关系数,如Kendall等级相关系数、Eta值等。 SPSS提供了多种适用于不同类型数据的相关系数表达,这些相关性检验的零假设都是:行和列变量之间相互独立,不存在显著的相关关系。根据SPSS检验后得出的相伴概率(Concomitant Significance)判断是否存在相关关系。如果相伴概率小于显著性水平0.05,那么拒绝零假设,行列变量之间彼此相关;如果相伴概率大于显著性水平0.05,那么接受原假设,行列变量之间彼此独立。