已知a ,b,c分别是三角形ABC三个内角A,B,C的对边,且2asin(C+π╱3)

2024-12-29 21:13:08
推荐回答(2个)
回答1:

(1)
2sinAsin[C+π/3]=√3sinB;
2sinA[sinC*1/2+cosC*√3/2]=√3sinB=√3(sin(A+B));
sinAsinC+sinAcosC*√3=√3(sinAcosB+cosAsinB);
推出:sinC(sinA+√3cosA)=0;
因为在三角形内角之和小于180度,即A<180度,推出---sinA>0;
所以(sinA+√3cosA)=0 ;
tanA=√3;
推出 A=30度;
(2)
假设A为2m;
由余弦定理可得:(BD)^2=AB^2+(m)^2-2m*AB*cos(π/3)
推出:m=4;
推出:AC=8;
由三角形面积公式可得:S=1/2*AB*AC*sin(A)=6√3;

回答2:

sin(a+c)