(1)公式求和法: ①等差数列、等比数列求和公式 ②重要公式:1+2+…+n= n(n+1); 1 2 +2 2 +…+n 2 = n(n+1)(2n+1); 1 3 +2 3 +…+n 3 =(1+2+…+n) 2 = n 2 (n+1) 2 ; (2)裂项求和法:将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.用裂项法求和,需要掌握一些常见的裂项,如:a n = = ( - ); = - ; (3)错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错位相减法.a n =b n c n ,其中{b n }是等差数列,{c n }是等比数列 (4)倒序相加法:S n 表示从第一项依次到第n项的和,然后又将S n 表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法. (5)通项分解法(分组求和法):有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.a n =b n ±c n (6)并项求和法:把数列的某些项放在一起先求和,然后再求S n .如:100 2 -99 2 +98 2 -97 2 +…+2 2 -1 2 的和. (7)利用通项求和法:先求出数列的通项,然后进行求和 |