已知a^2-4a+2=0,b+2⼀b=4,且a≠b求(a^3+b*a^2+b^3)⼀(a-b)^2

2024-12-21 17:09:25
推荐回答(1个)
回答1:

b+2/b=4,∴b^2 - 4b + 2 = 0,∵a^2-4a+2=0,且a≠b
∴a、b是x^2 - 4x + 2 = 0的相异实根,a+b = 4,ab = 2
∴(a^3 + b^2·a^2 + b^3)/(a-b)^2
= [(a+b)^3 - 3ab(a+b) + (ab)^2]/[(a+b)^2 - 4ab]
= [64 - 24 + 4]/[16-8]
= 5.5