先使用完全平方公式,再使用平方差公式即可。
解:原式=-(x²-2xy+y²)+1
=1²-(x-y)²
=(1-x+y)(1+x-y)
2xy+1-x^2-y^2
=1-(x²+y²-2xy)
=1-(x-y)²
=(1-x+y)(1+x-y)
2xy+1-x^2-y^2
=1-[x^2+y^2-2xy]
=1-(x-y)²
=(1-x+y)(1+x-y)
2xy+1-x²-y²
=1-(x²-2xy+y²)
=1-(x-y)²
=(1+x-y)(1-x+y)
=-x^2+2xy-y^2+1
=-(x^2-2xy+y^2)+1
=-(x-y)^2+1
=(1-x+y)(1+x-y)
原式=-(x^2+y^2-2xy)+1
=1-(x-y)^2
=(1+x-y)(1-x+y)