今年暑假我认真学习了《数学新课程标准解读》,通过本次学习,使我进一步认识到数学课程改革从理念、内容到实施,都有较大变化。数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机结合起来,为广大数学教师深刻领会数学新课改精神,有效的进行数学教学改革指明了方向。《数学新课程标准解读》中的“内容领域及其框架分析”里,分别具体阐述了“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应运”这四个内容方面的基本设计思路、内容特征和呈现形式,对每一领域需要注意的基本问题给出了相应得建议。下面我就谈一下我的感受:
一、多样化与优化
现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切。要创造促进每个学生得到长足发展的数学教育。
《课标》里“数与代数”中贯穿了算法多样化的思想,是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏止了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。
应该明确“算法多样化”与“一题多解”是有区别的。“一题多解”是面向个体,尤其是中等以上水平的学生,遇到同一道题可有多种思路多种解法,目的是为了发展学生思维的灵活性。而“多样化”是面向群体的,每人可以用自己最喜欢或最能理解的一种算法,同时在群体多样化时,通过交流、评价可以吸取或改变自己原有的算法。因此,在教学中不应该也不能要求学生对同一题说出几种算法,否则只是增加学生不必要的负担。
如果在计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学困生确是眼花缭乱、无所适从,产生了干扰。这种情况是不是我们鼓励的个性化呢?我认为不然。数学是讲“优化”的算法,“优化”的含意是要求寻找最简捷、最容易、速度快的方法。诚然,在多种算法中,有的并不见得有优劣之分。但是,一般情况下,总有个最基本、最一般或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般的算法,以便举一反三、闻一知百,否则就失去了教育的功能。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。
二、生活化与数学化
数学源于生活,寓于生活,用于生活。新课程改革重视数学教学生活化,引导学生在活动中学习数学,使孩子们感到数学有趣、有用,取得了明显的效果,也是数学课改的最大亮点。
数学,对儿童来说,是他们自己生活经验中对数学现象的一种“解读”。把数学教学密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。新教材的编排,有的通过调查商品标价引入小数乘法,调查父母月工资的收入计算多位数加减,测量足球场的面积并以其为参照物,体验1公顷的实际大小;有的结合新课内容介绍数学知识在实际中的应用;有的复习课也已不只停留在“查缺补漏,知识系统化”上,开始着力于培养学生综合运用知识解决实际问题的能力,并使学生体尝到数学应用的价值。但是,我们该不该有这样的疑惑:“数学问题是不是都必须从儿童的生活实际提出?”“教三角形内角和怎样从生活实际引入?”“循环小数又怎样联系学生的生活实际?”
应该看到,儿童的数学学习是一种不断提出问题、探索问题和解决问题的思维过程。问题是数学的心脏,数学问题来自两个方面,有来自数学外部的(即现实的生活实际),也有来自数学内部的。无论来自外部或内部,只要能造成学生的认知矛盾,都能引起学生的内在学习动机,就会出现发展,都是有价值的。前面提到的“三角形内角和”,如果采用由旧引新的方法(设问:正方形有几个内角?四个内角和是多少度?长方形呢?三角形三个内角的大小是不固定的,有没有规律呢?)三言两语,就能有效地激起学生的求知欲。因此,看问题必须全面,不能绝对化。教学是科学,一切要从实际出发。
当前,数学教学注重应用,既讲来源,又谈用处,大大地克服了过去“掐头去尾烧中段”脱离实际的倾向,成效是明显的。但必须认清,我们反对的是只“烧中段”,而不是不要“烧中段”,我们反对的是过度的形式化,而不是不要形式化,数学的形式化是数学固有的特点。我们既要注重应用、返璞归真的一面,又要注重抽象概括、形式推理的一面,引导学生抽象出数学问题,提炼出数学模型,利用其已有的知识经验,通过数学思考解决问题。所以,重要的数学概念、规律应加以概括,常见的数量关系(如速度、时间、路程等)在学生理解的基础上仍要揭示,在重视直觉思维的同时,还要注重培养形象思维和初步的逻辑思维,以提高学生的数学素养。
三、探索与发现
学习方式一般说来,可分为接受学习与发现学习两种。
发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家J.S布鲁纳提倡的,并流传欧美,这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大特点是会发现问题。他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。20世纪70年代传入中国时,我国教育家将“发现法”引申为“引导发现法”,主张在必要时教师可以适当给学生一点“引导”,与布鲁纳的“纯发现法”有些区别。教学实践折射出这样一个道理,外国的先进经验或理论的引入,必须本土化才能发挥其积极作用。我国目前强调的“自主探索”与“发现学习”亦基本相同。
美国另一位著名的教育心理学家D.P.奥苏伯尔针对20世纪60年代许多人以为讲授必然会导致机械学习,而发现学习才是有意义的学习的片面看法,在创造性地吸取了J.P.皮亚杰和布鲁纳等人的认知观点后,首先对学习进行了两个维度的不同分类。根据学习的深度分为有意义学习与机械学习,根据学习的方式分为发现学习与接受学习。
他不像布鲁纳那样只强调发现学习,认为学习可以分为有意义的发现学习和有意义的接受学习,而后者是学生的主要学习方式。奥苏伯尔的见解对我们研究小学生的数学学习是有启发的。
小学生学习数学,首先要掌握前人积累的数学基础知识(往往以符号形式表示),学生必须积极思考,理解每个符号、式子所代表的实际意义,才能真正内化成自己的认识。如果学习中仅仅记住这些符号的代表组合,例如,只知道读作“三分之二”,却不明其意,这就是机械学习。一般的数学学习都是有意义的学习,当然不排斥个别的机械学习,如背乘法口诀,这种熟记只有助于记忆,并不表明推导其结果的过程,而且机械学习也只是辅助性的学习。
数学学习中的有意义的接受学习是指学习内容已以定论形式展示出来,不需要学生去独立发现,只要学生从自己原有的认知结构中检索与新知识具有实质性联系的固定点,使之相互作用,实行新知识意义上的同化,从而扩大或改组认知结构。例如,“四则混合运算顺序”本身就是一种规定,学生在原有已掌握的加、减、乘、除法计算方法的基础上,“先乘除后加减”直接计算,便可接受这一知识。
目前我国提倡的探索学习则不同。这种学习方式不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考去探索发现某些数量关系和图形特征。例如,学习平行四边形面积求法时,学生用各种不同的平行四边形纸片,通过剪拼、割补转化成一个长方形,然后分析割补后的长方形的长和宽与原来平行四边形的底和高的关系,从而探索出平行四边形的面积公式为“底×高”。
就以上两种学习方式的功能比较而言:探索学习比较开放,它更重视学生的学习动机,更强调学习过程,有利于学生直觉思维和创新潜能的培养和发挥,但是费时较多,何况数学学习,不必要也不可能由学生处处去亲自发现和独立探索。有意义的接受学习可以在较短的时期内使学生吸取更多的信息,但是必须具备两个条件,一是学习课题对原认知结构具有潜在的意义(即有实质性的非人为的联系),二是学生具有积极学习的心向。如果两个条件俱全,同样可以激发学习的主动性,学习也是有效的;如果缺少其中一个条件,就容易造成死记硬背。
由此可见,两种主要学习方式都很重要,各有利弊,各司其职,不可偏废。而且有时在同一节课内,两种方式兼而有之、相互补充、相互配合。我认为,新一轮课改中反复强调的“动手实践、自主探索、合作交流是学生学习数学的重要方式”,要“改变学习方式”等,主要是针对过去过分沉湎于接受学习而影响学生创新精神的情况而提出的,绝不意味着反对接受学习。教学中,教师应全面而综合地从教学内容、要求、对象等各因素进行考虑,引导学生采用恰当的学习方式进行学习,以确保学习的有效性。那种提倡一种又去否定另一种学习方式“非此即彼”的绝对化做法和说法,不仅不符合教学实践,而且对课改的深入发展是有害无益的。
自主探索是教师引导下的自主探索,要处理好自主和引导、放和收、过程和结果之间的辩证关系。面对挑战性的问题,估计学生通过努力能够探索求得的,就应大胆放开,放要放得真心、实在,收要收得及时、自然。应该看到,只放不收只是表面上的热热闹闹,收效极微,失去了教师有价值的引导,剩下的主体性往往也是苍白无力的。
四、应用数学的意识
这个提法是以前大纲所没有的,这几年颇为流行,未见专门的说明。结合当前课改的实际情况,可以理解为“理论联系实际”在数学教学中的实践,或者理解为新大纲理念的“在解决问题中学习”的深化。新旧教材中,都配备有所谓的应用题,有许多内容已经很陈旧,与现实生活相差甚远。结合实际重新编写应用题只是增强应用数学的意识的一部分,而绝非全部;增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习、主动探究。教师有责任拓宽学生主动学习的时空,指导学生撷取现实生活中有助于数学学习的花朵、启迪学生的应用意识,而学生则能自己主动探索,自己提问题、自己想、自己做,从而灵活运用所学知识,以及数学的思想方法去解决问题。
通过对新课标的学习,本人更深层地体会到新课标的指导思想,深切体会到作为教师,我们应该以学生发展为本,指导学生合理选择学习方法、制定学习计划;帮助学生打好基础,提高对数学的整体认识,发展学生的能力和应用意识,注重数学知识与实际的联系,注重数学的文化价值,促进学生的科学观的形成。在日常教学中,就要贯彻新课标的指导思想,更新理念,改进教学方法,争取早日成为新课改中合格的、成熟的数学教师。
搜索与发现