专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。
为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解问题的世界范围内的事实和断言。知识库包含所有用“如果:〈前提〉,于是:〈结果〉”形式表达的知识规则。推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。 知识库用来存放专家提供的知识。专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。
人工智能中的知识表示形式有产生式、框架、语义网络等,而在专家系统中运用得较为普遍的知识是产生式规则。产生式规则以IF…THEN…的形式出现,就像BASIC等编程语言里的条件语句一样,IF后面跟的是条件(前件),THEN后面的是结论(后件),条件与结论均可以通过逻辑运算AND、OR、NOT进行复合。在这里,产生式规则的理解非常简单:如果前提条件得到满足,就产生相应的动作或结论。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。
正向链的策略是寻找出前提可以同数据库中的事实或断言相匹配的那些规则,并运用冲突的消除策略,从这些都可满足的规则中挑选出一个执行,从而改变原来数据库的内容。这样反复地进行寻找,直到数据库的事实与目标一致即找到解答,或者到没有规则可以与之匹配时才停止。
逆向链的策略是从选定的目标出发,寻找执行后果可以达到目标的规则;如果这条规则的前提与数据库中的事实相匹配,问题就得到解决;否则把这条规则的前提作为新的子目标,并对新的子目标寻找可以运用的规则,执行逆向序列的前提,直到最后运用的规则的前提可以与数据库中的事实相匹配,或者直到没有规则再可以应用时,系统便以对话形式请求用户回答并输入必需的事实。
由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。
综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。
知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。 早期的专家系统采用通用的程序设计语言(如fortran、pascal、basic等)和人工智能语言(如lisp、prolog、smalltalk等),通过人工智能专家与领域专家的合作,直接编程来实现的。其研制周期长,难度大,但灵活实用,至今尚为人工智能专家所使用。大部分专家系统研制工作已采用专家系统开发环境或专家系统开发工具来实现,领域专家可以选用合适的工具开发自己的专家系统,大大缩短了专家系统的研制周期,从而为专家系统在各领域的广泛应用提供条件。