a(1)=sin(π/2)/1=1;a(1)=sin(π)/2=0;a(3)=sin(3π/2)/3=-1/3;a(4)=sin(2π)/4=0;a(5)=sin(5π/2)/5=1/5;a(6)=sin(3π)/6=0;a(7)=sin(7π/2)/7=-1/7。综上所述,其规律为a(n)=sin(nπ/2)/n。
an=[1+(-1)^(n-1)]*[(-1)^(n/2-1/2)]/(2n)
an= sin[(pi/2)n] / n