个对称型(点群)及其推导

2025-02-25 10:37:01
推荐回答(1个)
回答1:

晶体形态中,全部对称要素的组合,称为该晶体形态的对称型(class of symmetry)或点群(point group)。一般来说,当强调对称要素时称对称型,强调对称操作时称点群,因为在晶体形态中,全部对称要素相交于一点(晶体中心),在进行对称操作时至少有一点不移动,并且各对称操作可构成一个群,符合数学中群的概念(见第六章),所以称为点群。对称型与点群是一一对应的。

根据晶体形态中可能存在的对称要素及其组合规律,推导出晶体中可能出现的对称型(点群)是非常有限的,仅有32种(表3-2)。这32个对称型(点群)的推导方法可以根据上述对称要素组合定理,直观地推导出来。

首先回顾一下晶体形态上可能存在的对称要素,它们是:对称轴L1、L2、L3、L4、L6;对称面 P;对称中心 C;旋转反伸轴+C,=L 3+P

为了便于推导,我们把这些对称要素的组合分为两类:把高次轴不多于一个的组合称为A类;把高次轴多于一个的组合称为B类。

1.A类对称型的推导

上列对称要素可能的组合共有以下7种情况:

(1)对称轴Ln单独存在,可能的对称型为L1;L2;L3;L4;L6

表3-2 正多边形可能围成的正多面体及其对称轴的组合

图3-12 Ln与L2的组合

(2)对称轴与对称轴的组合。由于A 类只包括高次轴不多于一个的对称型,所以只考虑 Ln 与L2 的组合,如果 L2 与Ln斜交仍有可能出现多于一个的高次轴,如图3-12(a)L2 与 Ln 斜交,则 Ln围绕L2 旋转 180°,必将产生另一个 Ln;而如图3-12(b)当 L2 垂直 Ln 时则不会产生新的Ln。因此在这里我们只考虑 Ln与垂直它的L 2 的组合。根据上节所述对称要素组合规律,可能的对称型为:(L1 L2=L2);L22 L2=3 L2;L33 L2;L44 L2;L66 L2。(括号内的对称型与其他项推导出的对称型重复,下同。)

(3)对称轴Ln与垂直它的对称面P的组合。考虑到组合定理Ln(偶)×P→Ln(偶)PC,则可能的对称型为:(L1 P=P);L2 PC;(L3 P=);L 4 PC;L 6 PC。

(4)对称轴Ln与包含它的对称面的组合。根据组合定理Ln×P→LnnP,可能的对称型为:(L1P=P);L22P;L33P;L44P;L66P。

(5)对称轴 Ln 与垂直它的对称面以及包含它的对称面的组合。垂直 Ln 的P 与包含Ln 的P 的交线必为垂直Ln 的L2 (图3-13),即 Ln ×P×P→Ln ×P×P×→LnnL2 (n+1)P(C)(C 只在有偶次轴垂直P 的情况下产生),可能的对称型为:(L1L22P=L22P);L22L23PC=3L23PC;(L33L24P=);L44 L25 PC;L66 L27 PC。

图3-13 Ln与P 的组合

(a)(b)P包含Ln、垂直Ln都不产生新的Ln;(c)Ln与两个P组合(一个P包含Ln,另一个P垂直Ln,则这两个P互相垂直将在两P交线上产生一个L2;(d)P与Ln斜交将产生新的Ln

(6)旋转反伸轴单独存在。可能的对称型为:=C;=P;=L3 C;=L3 P

(7)旋转反伸轴与垂直它的L2 (或包含它的 P)的组合。根据组合定理,当 n 为奇数时会产生,可能的对称型为:=L 2 PC);=L33 L23 PC;当 n 为偶数时会产生(n/2)(n/2)P∥,可能的对称型为:(=L22 P);;=L33 L24 P。

由于对称面 P=,对称中心 C=,故不再单独列出。

综合以上,共推导出 A 类对称型27种(见表3-3)。

2.B类对称型的推导

首先让我们考虑高次轴 L4 与 L3 的组合。如图3-14所示,设有一个 L4 与 L3 相交于晶体中心,由于 L4 的作用,在 L4 的周围可获得4个 L3。在每个 L3 上距晶体中心等距离的地方取一个点,连结这些点可以得到一个正四边形(即图 3-14 中的立方体的正方形的面),L4 出露于正四边形的中心,L3 出露于正四边形的角顶。由于 L3 的作用,在 L3 的周围必定可以获得3个正四边形,它们会集而成一个凸三面角,L3 即出露于这个凸三面角的角顶上。这样,我们就获得了一个由 6 个正四边形和 8 个凸三角组成的正多面体———立方体。高次轴 L4 与 L3 的组合就相当于正四边形所组成的正多面体———立方体中高次轴的组合。

由此可知,在B类对称型中,高次轴Ln与Lm的组合,相当于由正多边形所组成的正多面体中的高次轴的组合。

在立体几何学中业已证明,一个凸多面角至少须由3 个面组成,且其面角之和须小于360°。因此围成正多面体的正多边形只可能是正三角形(内角60°)、正方形(内角90°)和正五边形(内角108°)。它们可能围成的正多面体及其所具有的对称轴的组合如表3-2所列。

图3-14 L4与 L3的组合图解

从表3-2 可以看出,正三角十二面体和正五角十二面体皆具有 L5,与晶体的对称不符,可不予考虑。其余3种多面体中对称轴的组合有下面两种类型:①立方体及八面体3 L44 L36 L2;②四面体3 L24 L3

在第一种对称型3L44L36L2中加入一个不产生新对称轴的对称面,可以获得如下的第3种对称型:③3L44L36L29PC。

在上述第二种对称型3L24L3中加入不产生新对称轴的对称面的方法有二,其一是垂直L2的对称面,其二是与两个L2等角度(45°)斜交的对称面,其结果可分别获得如下的第4种和第5种对称型:④3 L24 L33 PC;⑤。

属于B类的对称型共有上列的5种。

综合 A、B 两类,晶体中可能有的对称型共32种,如表3-3所列。

表3-3 32种对称型的推导