用极限定义证明数列极限的关键是:
1、对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立・这里的Πε>0,由证题者自己给出・因此,关键是找出N・那么,如何寻找N呢?
2、显然,要寻找的N,一定要满足当n>N时,有|an-a|<ε成立・而|an-a|可以看成是关于正整数n的函数,我们可以通过求解不等式|an-a|<ε,找到使|an-a|<ε成立,n所要满足的条件,亦即不等式|an-a|<ε的解集・该解集是自然数集N的无限子集・对同一个ε,N并不惟一。
3、因此,只需在该解集找出一个作为N即可・这样寻找N的工作就转化成求解不等式|an-a|<ε的问题了。
用定义证明数列极限存在的关键是:
对Πε>0,都能找到一个正整数N.
当n>N时,有|an-a|<ε成立・这里的Πε>0,由证题者自己给出.
关键是找出N・那么,如何寻找N呢?
,要寻找的N,一定要满足当n>N时,有|an-a|<ε成立・而|an-a|可以看成是关于正整数n的函数,.
我们可以通过求解不等式|an-a|<ε,找到使|an-a|<ε成立,n所要满足的条件,亦即不等式|an-a|<ε的解集.
该解集是自然数集N的无限子集・对同一个ε,N并不惟一,
因此,只需在该解集找出一个作为N即可・这样寻找N的工作就转化成求解不等式|an-a|<ε的问题了・
用定义证明数列极限存在的关键是:对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立。这里的Πε>0,由证题者自己给出。因此,关键是找出N。那么,如何寻找N呢?显然,要寻找的N,一定要满足当n>N时,有|an-a|<ε成立。而|an-a|可以看成是关于正整数n的函数,我们可以通过求解不等式|an-a|<ε,找到使|an-a|<ε成立,n所要满足的条件,亦即不等式|an-a|<ε的解集。该解集是自然数集N的无限子集。对同一个ε,N并不惟一,因此,只需在该解集找出一个作为N即可。这样寻找N的工作就转化成求解不等式|an-a|<ε的问题了。