∵函数y=(3-x2)ex,∴f′(x)=-2xex+(3-x2)ex=(3-2x-x2)ex,由f′(x)≥0得=(3-2x-x2)ex≥0,即3-2x-x2≥0,则x2+2x-3≤0,解得-3≤x≤1,即函数的单调增区间为[-3,1],故答案为:[-3,1]
y'=-2^xe^x+(3-x2)e^x=e^x(-x^2-2x+3)>0x^2+2x-3<0-3∴函数y=(3-x^2)e^x的单调递增区间是(-3,1).