(Ⅰ)∵数列{an}满足a1=1,a2=2,
记
=(an,an+1),且
AnAn+1
∥
A1A2
,
AnAn+1
∴(1,2)∥(an,an+1),
∴
=1 an
,2 an+1
∴an+1=2an,
∴{an}是首项为1,公比为2的等比数列,
∴an=2n?1.
(Ⅱ)假设存在等差数列{bn}使得
aibi=(2n-3)2n+3,n i=1
则1×b1=3-2=1,解得b1=1,
1+2b2=7,解得b2=3,
∴{bn}是首项为1,公差为2的等差数列,
∴bn=2n-1.