⑴当a=1/2时,f(x)=x^2+2x+1/2x在x∈[1,+∞)时单调递增的。
证:令x1>x2>=1
f(x1)-f(x2)=x1^2+2x1+1/2x1-x2^2+2x2-1/2x2
=(x1+x2)(x1-x2)+2(x1-x2)+(x2-x1)/2x1x2
=(x1+x2)(x1-x2)+(4x1x2-1)(x1-x2)/2x1x2
x1-x2>0
x1x2>1,即4x1x2>1
所以f(x1)-f(x2)>0
所以在x∈[1,+∞)时单调递增的。
2、a=-1,则f(x)=x^2+2x-1/x
可以通过上面的方法知道a=-1时,x∈[1,+∞)时也是单调递增的
所以f(x)min=f(1)=1+2-1=2
单调递增。简单地说,将a=1/2代入原式,因为x∈[1,+∞),你就分别代x=1,2时,可得出f(1)
对函数求导 之后的出来的结果是 恒大于0 所以递增
最后 同理证明 也是单调递增 所有x=1 是f(x)有最小值
(1)单调递增,在定义域上任设X1 X2,且x1