若:x=1⼀根号3-2,y=1⼀根号3+2,求下式值

若:x=1/(根号3-2), y= 1/(根号3+2)求:(x²+xy+y²)/(x+y)
2025-01-02 13:17:46
推荐回答(3个)
回答1:

(x²+xy+y²)/(x+y)
=[(x+y)²-xy]/(x+y)

x=-2-根号3
y=-2+根号3

x+y=-4 xy=1

所以原式=(16-1)/-4=-3.75

回答2:

(x²+xy+y²)/(x+y)
=(x²+2xy+y²-xy)/(x+y)
=[(x+y)²-xy]/(x+y)
=(x+y)-xy/(x+y)

x+y=-2根号3
xy=-1

代入得-(11/6)根号3

回答3:

-(11/6)根号3