高数广义积分问题!

2024-12-21 21:08:43
推荐回答(2个)
回答1:

LZ看图!答案是ln2

回答2:

∫xe^-x/(1+e^-x)2dx=∫x/(e^x+e^(-x)+2)dx
换元t=e^x x=lnt
∫x/(e^x+e^(-x)+2)dx =∫lnt/(t+1/t+2)dlnt 下限为1,上限为+∞
=∫lnt/(t^2+2t+1)dt
=∫lnt/(t+1)^2dt=-∫lntd(1/t+1)=∫(1/t+1)dlnt-lnt/(t+1)[下限为1,上限为+∞]
=∫1/(t+1)tdt-lnt/(t+1)
=lnt-ln(t+1)-lnt/ (t+1)[下限为1,上限为+∞]
=(0)-(-ln2)=ln2
不知道算对没有,但方法就是这个