(1)∵sinA=sin(A-B)+sinC,且sinC=sin[π-(A+B)]=sin(A+B),
∴sinA=sinAcosB-cosAsinB+sinAcosB+cosAsinB=2sinAcosB,
又sinA≠0,
∴cosB=
,又B为三角形的内角,1 2
则B=
;π 3
(2)∵b2=ac,cosB=
,1 2
∴由余弦定理b2=a2+c2-2accosB得:ac=a2+c2-ac,
即(a-c)2=0,
∴a=c,又B=
,π 3
则△ABC为等边三角形;
(3)∵C=π-(A+B),B=
,π 3
∴sin(C-
)=sin[π-(A+π 6
)-π 3
]=sin(π 6
-A)=cosA,sinC=sin(A+B),π 2
由正弦定理
=a sinA
=b sinB
化简得:c sinC
=b?sin(C?
)π 6 (2c?a)?cosB
=sinB?sin(C?
)π 6 (2sinC?sinA)?cosB
cosA
3
2 sin(A+
)? π 3
sinA1 2
=
=1,
cosA
3
2
sinA+1 2
cosA?
3
2
sinA1 2
则
为定值.b?sin(C?
)π 6 (2c?a)?cosB