其实,回答者大多是同学或老师,只要理由正确,不应该过多考虑其职业——老师也有犯错误的时候,优秀的同学也可能胜过老师。我之前倒是给本科生上过概率统计学的课,但是已经几年没有再接触了,在没有仔细考虑的情况下,刚开始得出了错误的结论。
这道题的确很容易出错。最主要的错误就是容易把“其中一个是儿子在星期二出生”这句话理解为:“其中较大的一个孩子是儿子在星期二出生”或“其中较小的一个孩子是儿子在星期二出生”,或是理解为“有一个小孩是儿子,有一个小孩在星期二出生”。因为,要满足“两个小孩都是儿子且其中一个儿子在周二出生”这样的条件,一个儿子是否在周二出生对另外一个儿子的出生时间的是有影响的(一般情况下,这是不相关的)。
如果题目变为,已知老大(或老二)是儿子,在周二出生,问另一个孩子也是儿子的概率,那么结果无疑是1/2。但是题目并非要求解决这个问题。目前并不知道周二出生的儿子是老大还是老二,使得在考虑两个儿子的出生日期是否含有周二时比较复杂,两个儿子中,有一个(不一定只有一个)在周二出生的概率并不是2/7——虽然两个儿子中(至少)有一个在星期n出生的概率在n取各个可能情况时都相同,但这些概率加起来并不是2。
还有一个误区就是,习惯性地认为二选一的概率就是1/2。古典概型问题中,一般是在没有理由认为某种选择方式发生的可能性更大时,才把各个选择方式的概率看成相等。但这并不意味着我们以某种具体方法不能判断各个选择方式的概率大小时,他们的概率就相等。抛硬币可以认为各面概率都是1/2;不过,一个对围棋完全不了解的人,如果不查一下选手详细信息,就不知道两位段位相同的高手下棋时谁赢的可能性大,但这并不意味着两位选手获胜的几率一样。同理,这道题目如果不经过仔细的计算,得出更多的信息,就分不清在其中一个孩子是周二出生的儿子的条件下,两个孩子都是儿子的概率是不是1/2(没有找到否定这个概率是1/2的理由,并不意味着就不存在否定它的理由)。
设事件B={两个孩子中有一个是儿子,且在星期二出生},事件A={两个孩子都是儿子},则事件AB={两个孩子都是儿子,且且其中一个在星期二出生}。
两个孩子的性别有四种情况:男男、男女、女男、女女。
用“男1女3”表示第一个孩子(不妨称为老大)为男孩且在星期一出生,第二个孩子(老二)为女孩且在星期三出生;
用“女5男2”表示老大为女孩且在星期五出生,老二为男孩且在星期二出生;
一次类推。
在等概率假定下,一共有4*7*7=196种情况,
其中事件B发生的情况有如下这些:
“男2女n”(n从1到7),共7种情况;
“女n男2”(n从1到7),共7种情况;
“男2男n”、“男n男2”(n从1到7),各7种情况,除去重复的一种,共13种情况。
总共有27种情况。
事件AB发生的情况为上面的第三部分,有13种情况。
于是P(AB)=13/196,P(B)=27/196,
P(A|B)=P(AB)/P(B)=13/27。
2。13/27
条件概率的方法,上面有人说的很正确,不再赘述。只说一下直观理解。
按照题目的定义,只是“知道有一个在星期二出生的儿子”。这种情况下,必须要对两个孩子编号1,2 ,以下第一个性别为编号1,第二个性别为编号2
所有情况是:男男,男女,女男,女女,每个人都可能在1-7出生
满足有一个在周二出生的儿子的:
总共有27种可能,(男2 男1,3,4,5,6,7), (男1,3,4,5,6,7男2)(男2,男2),(男2女1-7),(女1-7男2)
两个儿子的可能性占了其中13种,即前三个括号
个人感觉是13/27
PS,如果你"看见了"这个周二出生的儿子,那么概率就是1/2。
这道题目挺经典,我对这两种情况都可以保证答案的准确度。
其他问题hi联系。
职业,大学生。高考数学分数148。
典型的条件概率嘛
解答如下:
设 有一个儿子在星期二出生 为条件B
设 有两个儿子 为条件A
则,题目其实是问:在B满足的条件下,发生A的概率。
根据条件概率公式:P(A|B)=P(AB)/p(B)
而 P(AB)=(1/4)*[1-(6/7)*(6/7)]
P(B)=(2*14-1)/(14*14)
所以最后结果选【2】
尤其需要注意的是事件AB不是独立事件,
不能用独立事件乘法公式:P(AB)=P(A)*P(B)!
祝你今后学习愉快
看来还没定论呀~~无语~~都说了是条件概率了!
条件概率中有许多是不能凭借直觉的,最典型的例子是《三门问题》
任何一本比较好的概率统计书中都会提到《三门问题》,这里直觉是不可靠的!
关于《三门问题》可以百度一下嘛……
顺便说说自己的职业——研究生在读,给导师当助教,也算半个老师吧……
答案是:1.
因为第一个是儿子,第二个可能是儿子,也有可能是女儿,所以总共有两种可能,分别是儿子和儿子,还有就是儿子和女儿,所以概率是 50%
显然是:50%.
如果题目改成:已知3个孩子,且2个是儿子, 他有3个儿子的概率为多少?
已知n个孩子,且n-1个是儿子,他有n 个儿子的概率为多少?
驳论,如果是13/27,不是1/2,那么n足够大后,已知n-1个儿子,他有n个儿子的就概率越来越小,到最后就一定是女儿.显然不成立.
我承认我错了,我没有仔细审题,因为题目中”其中一个是儿子在星期二出生”,这个条件不等同于,”其中一个是儿子”,而是两个已知条件:
1. 已知一个是儿子;
2. 另外一个儿子不能在星期2出生.
所以,答案是13/27