1⼀1*2+1⼀2*3+1⼀3*4......1⼀98*99+1⼀99*100解决思路 高手帮帮忙

要思路
2024-12-28 11:49:13
推荐回答(4个)
回答1:

解:原式=(1-1/2)+(1/2-1/3)+……+(1/99-1/100)
=1-1/100
=99/100
这道题是典型的裂项相消的题目,
重点记住这个公式
1/(n(n+1))=(1/n)-(1/n+1)
然后拆开来的项对应相消,这种题目在竞赛中考得很频繁,需要熟记于心

回答2:

1/1*2+1/2*3+1/3*4......1/98*99+1/99*100
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/99-1/100)
中间正负抵消
=1-1/100
=99/100

回答3:

原式课化为:1-1/2+1/2-1/3+1/3-1/4+。。。。。。。-1/99+1/99-1/100=1-1/100=99/100

回答4:

1/1*2+1/2*3+1/3*4......1/98*99+1/99*100
=(2-1)/1*2+(3-2)/2*3+(4-3)/3*4......+(99-98)/98*99+(100-99)/99*100
=1-1/2+1/2-1/3+1/3-1/4+......+1/98-1/99+1/99-1/100
=1-1/100
=99/100