均值滤波和中值滤波的内容非常基础,均值滤波相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能为力。中值滤波的优点是可以很好的过滤掉椒盐噪声,缺点是易造成图像的不连续性。通过下面三张图可以清楚看到以上两种滤波方法的差异。
/iknow-pic.cdn.bcebos.com/0824ab18972bd40772926bcb76899e510fb309aa"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/0824ab18972bd40772926bcb76899e510fb309aa?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/0824ab18972bd40772926bcb76899e510fb309aa"/>
原图是含有椒盐噪声的图像
/iknow-pic.cdn.bcebos.com/c2fdfc039245d688e0510a92a9c27d1ed21b24b0"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/c2fdfc039245d688e0510a92a9c27d1ed21b24b0?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/c2fdfc039245d688e0510a92a9c27d1ed21b24b0"/>
利用中值滤波处理后,椒盐噪声几乎完全被去除掉
/iknow-pic.cdn.bcebos.com/a044ad345982b2b7054181f23cadcbef76099b2e"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/a044ad345982b2b7054181f23cadcbef76099b2e?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/a044ad345982b2b7054181f23cadcbef76099b2e"/>
利用均值滤波处理后,椒盐噪声被处理成了小的气泡,但与此同时图像开始变得模糊。
拓展资料:
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)},其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m∑f(x,y)m为该模板中包含当前像素在内的像素总个数。
均值滤波和中值滤波的内容非常基础,均值滤波相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能为力。中值滤波的优点是可以很好的过滤掉椒盐噪声,缺点是易造成图像的不连续性。通过下面三张图可以清楚看到以上两种滤波方法的差异。
原图是含有椒盐噪声的图像
利用中值滤波处理后,椒盐噪声几乎完全被去除掉
利用均值滤波处理后,椒盐噪声被处理成了小的气泡,但与此同时图像开始变得模糊。
拓展资料:
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。
均值滤波:是把每个像素都用周围的8个像素来做均值操作,幅值近似相等且随机分布在不同位置上,这样可以平滑图像,速度较快,算法简单。但是无法去掉噪声,只能微弱的减弱它。中值滤波:常用的非线性滤波方法 ,也是图像处理技术中最常用的预处理技术。它在平滑脉冲噪声方面非常有效,同时它可以保护图像尖锐的边缘,选择适当的点来替代污染点的值,所以处理效果好。其中加权中值滤波能够改进中值滤波的边缘信号,使其良好保持效果。
中值滤波会让同学U盘消失,均值滤波会让U盘暴毙。
请问中值滤波与均值滤波各自的优缺点