待求式=(-sin(15π/7+α-π)-3cos(α-13π/7+3π))/(-sin(α-20π/7)-cos(α+22π/7-2π))
=(-sin(α+8π/7)-3cos(α+8π/7))/(-sin(α-20π/7+4π)-cos(α+8π/7))
=(-sin(α+8π/7)-3cos(α+8π/7))/(-sin(α+8π/7)-cos(α+8π/7))
=(sin(α+8π/7)+3cos(α+8π/7))/(sin(α+8π/7)+cos(α+8π/7))
由tan
(α+8π/7)=2可知cos(α+8π/7)不为0,于是在上式中分子分母同除以cos(α+8π/7)得:
待求式=(tan(α+8π/7)+3)/(tan(α+8π/7)+1)
=(2+3)/(2+1)=5/3