利用柯西不等式证明

2025-01-01 12:59:29
推荐回答(1个)
回答1:

全部打开,不能直接用柯西不等式
(a²+b²)+[(1/a)²+(1/b)²]≥17/2
首先(a²+b²)(1+1)≥(a+b)²=1
推出(a²+b²)≥1/2
现在只需要证明(1/a)²+(1/b)²≥8
用两次柯西不等式(1+1)[(1/a)²+(1/b)²]≥(1/a+1/b)²
有(1/a+1/b)(a+b)≥(1+1)²=4
反推回去,可以得到(1/a)²+(1/b)²≥8
得证!!
希望对你有启示,一定要沿着取等号的条件a=b=1/2用柯西