把我能想到的说了吧,只想了四种……
第一类:纯几何证法。
①要是四个点分别连成两条直线相交了,那必然共面。
②有位置关系,比如两两连成直线以后,出现了这两条直线垂直、平行等现象。
第二类:解析几何证法。假设这四个点是A、B、C、D。(任意两点不重合)
就不说建立空间坐标系的了,就说一下向量方法。
①平面向量基本定理。向量AB、向量AC如果能线性表出AD,也就是存在两个实数α、β使得
α向量AB+β向量AC=向量AD,那么它们就共面。
②先把平面ABC的法向量n找出来,然后用AD点乘n,如果等于0必然D在平面ABC内。