如图
①a^2+b^2+c^2-(ab+bc+ca)=(1/2)[(a-b)^2+(b-c)^2+(c-a)^2]>=0,∴a^2+b^2+c^2>=ab+bc+ca.②由已知两式平方和得(cosB)^2+(cosC)^2=[(cosΘ)^2+(sinΘ)^2](sinA)^2=(sinA)^2,∴(sinA)^2+(sinB)^2+(sinC)^2=(sinA)^2+2-(cosB)^2-(cosC)^2=2.