1⼀cosx(sinx)^3的不定积分怎么做?高分求解。

2024-11-26 00:27:19
推荐回答(5个)
回答1:

详细图解:

回答2:

这么多大牛,其实有时我觉得,这么累算一个记分没什意思。给一个matlab的结果,

>> syms x;
>> f='1/(cos(x)*(sin(x))^3)';
>> int(f,x)

ans =

log(tan(x)) - 1/(2*sin(x)^2)

因为我是学工科的注重实效,考虑的一些像工作中会用到吗?有多大用途?有些东西会用,知道怎么能得到结果且结果正确就行。

`~~`没别的意思,检验一下结果

回答3:

解:原式=∫cosxdx/(cos²xsin³x)
=∫d(sinx)/[(1-sin²x)sin³x]
=∫[1/sinx+1/sin³x-(1/2)/(sinx-1)-(1/2)/(sinx+1)]d(sinx)
=ln│sinx│-(1/2)/sin²x-(1/2)ln│(sinx-1)│-(1/2)ln│(sinx+1)│+C (C是积分常数)
=(1/2)ln│sin²x/[(1-sinx)(1+sinx)]│-(1/2)/sin²x+C
=(1/2)ln│sin²x/(1-sin²x)│-(1/2)/sin²x+C
=(1/2)ln│sin²x/cos²x│-(1/2)/sin²x+C
=ln│sinx/cosx│-(1/2)/sin²x+C
=ln│tanx│-(1/2)/sin²x+C

回答4:

解:原式=∫cosxdx/(cos²xsin³x) =∫d(sinx)/[(1-sin²x)sin³x] =∫[1/sinx+1/sin³x-(1/2)/(sinx-1)-(1/2)/(sinx+1)]d(sinx) =ln│sinx│-(1/2)/sin²x-(1/2)ln│(sinx-1)│-(1/2)ln│(sinx+1)│+C (C是积分常数) =(1/2)ln│sin²x/[(1-sinx)(1+sinx)]│-(1/2)/sin²x+C =(1/2)ln│sin²x/(1-sin²x)│-(1/2)/sin²x+C =(1/2)ln│sin²x/cos²x│-(1/2)/sin²x+C =ln│sinx/cosx│-(1/2)/sin²x+C =ln│tanx│-(1/2)/sin²x+C
http://kpccyy.com/question/g160808039.html

回答5:

∫1/cosx(sinx)^3 dx=∫cosxdx/(cos2xsin3x)
=∫d(sinx)/[(1-sin2x)sin3x]
=∫[1/sinx+1/sin3x-(1/2)/(sinx-1)-(1/2)/(sinx+1)]d(sinx)
=ln│sinx│-(1/2)/sin2x-(1/2)ln│(sinx-1)│-(1/2)ln│(sinx+1)│+C
=(1/2)ln│sin2x/[(1-sinx)(1+sinx)]│-(1/2)/sin2x+C
=(1/2)ln│sin2x/(1-sin2x)│-(1/2)/sin2x+C
=(1/2)ln│sin2x/cos2x│-(1/2)/sin2x+C
=ln│sinx/cosx│-(1/2)/sin2x+C
=ln│tanx│-(1/2)/sin2x+C