E[(X2-3X+2)]=1泊松分布以期望、方差均等于参数为数字特征:E(X)=D(X)=λ而由方差D(X)=E(X^2)-E(X)^2,可得E(X^2)=λ+λ^2于是,E[(X^2-3X+2)]=E(X^2)-3E(X)+2=λ+λ^2-3λ+2=1即λ^2-2λ+1=0解得λ=1
X是服从参数为λ的泊松分布EX=λ varX=E(x^2)-(EX)^2=λE(x^2)=λ+λ^2E[(X^2-3X+2)]=E(X^2)-3EX+2=λ+λ^2-3λ+2=1λ=1