f(x)=x+3x^2+5x^3 +…+(2n-1)x^n
所以有xf(x)=x^2+3x^3+5x^4+……+(2n-3)x^n+(2n-1)x^(n+1)
两式相减得:(1-x)f(x)=x+2x^2+2x^3+2x^4+……+2x^n-(2n-1)x^(n+1)
=x+2x^2*(1-x^(n-1))/(1-x)-(2n-1)x^(n+1)
代入1/2,整理得1/2*f(1/2)=3/2-(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)
<3/2
所以 f(1/2)<3
f(1/2)小于3
错位相减求和
问题问清楚下,OK?看不明白你的问题