解:
∵m,n共线,
∴(a-b)/(a-c)=c/(a+b)
∴a²-b²=ac-c², ac=a²+c²-b²
余弦定理 cosB=(a²+c²-b²)/2ac=ac/2ac=1/2
∴B=60°, A+C=120°, 即A=120°-C
y=2sin²C+cos(120°-C-3C)/2=1-cos2C+cos(60°-2C)
=1-cos2C+cos60°cos2C+sin60°sin2C
=1-cos2C+(1/2)cos2C+(√3/2)sin2C
=1+(√3/2)sin2C-(1/2)cos2C
=1+sin2Ccos30°-sin30°cos2C
=1+sin(2C-30°)
∵-1<=sin(2C-30°)<=1
∴sin(2C-30°)=1时,y最大为2,此时2C-30°=90°, C=60°
综上,y的最大值为2,此时C=60°