a2 = a1 + d
a5 = a1 + 4d
a2 + a5 = 2a1 + 5d = 4
5d = 4 - 2a1 = 10/3
d = 2/3
an = a1 + (n - 1)d
= 1/3 + 2(n - 1)/3
= (2n - 1)/3 = 33
2n - 1 = 99
n = 50
等差数列{an}:an=a1+(n-1)d
∵a2+a5=4
∴2a1+5d=4.∵a1=1/3 ∴d=2/3
∴an=1/3+(n-1)2/3=33
2(n-1)=99-1
n=50
设差值为q,则:
a2+a5=a1+q+a1+(5-1)q=4
2a1+5q=4
2*1/3+5q=4
q=2/3
an=a1+(n-1)q=1/3+(n-1)2/3=33
n-1=49
n=50