(1)依Cauchy不等式得1/x+1/y+1/z=1²/x+1²/y+1²/z≥(1+1+1)²/(x+y+z)=9/3=3.故x=y=z=1时,所求最小值为3.(2)x²+y²+z²=x²/1+y²/1+z²/1≥(x+y+z)²/(1+1+1)=9/3=3,x²+y²+z²=(x+y+z)²-2(xy+yz+zx)<(x+y+z)²=9,∴3≤x²+y²+z²<9。