已知 x ;y; z>0 x+y+z=3 求 1⼀x+1⼀y+1⼀z最小值 2.证明3≤x2+y2+z2<9

2025-01-01 13:03:50
推荐回答(1个)
回答1:

(1)
依Cauchy不等式得
1/x+1/y+1/z
=1²/x+1²/y+1²/z
≥(1+1+1)²/(x+y+z)
=9/3
=3.
故x=y=z=1时,
所求最小值为3.

(2)
x²+y²+z²
=x²/1+y²/1+z²/1
≥(x+y+z)²/(1+1+1)
=9/3
=3,
x²+y²+z²
=(x+y+z)²-2(xy+yz+zx)
<(x+y+z)²
=9,
∴3≤x²+y²+z²<9。