大学高等数学 求和函数 求详解

2024-12-15 14:55:52
推荐回答(1个)
回答1:

收敛半径 R = lim(n+1)3^(n+1)/(n3^n) = 3
收敛域 x∈[-3,3)
S(x) = ∑x^n/(n3^n), S(0) = 0
S'(x) = ∑x^(n-1)/3^n
= ∑(1/3)(x/3)^(n-1)
= (1/3)/(1-x/3), x∈[-3,3)
S(x) = ∫<0, x> S'(t)dt +S(0)
= ∫<0, x> (1/3)dt/(1-t/3)
= -ln(1-x/3), x∈[-3,3)
(-1)^(n+1)/(n3^n)
= -∑(-1)^n/(n3^n)
= -S(-1) = ln(1+1/3) = 2ln2-ln3