如上图所示。
这是某一年研究生入学考试真题
1-cosxcos2xcos3x = 1-(1/2)cos2x(cos4x+cos2x)= 1-(1/2)cos2xcos4x-(1/2)(cos2x)^2=1-(1/4)(cos6x+cos2x)-(1/4)(1+cos4x)= 3/4 - (1/4)(cos6x+cos4x+cos2x)lim(1-cosxcos2xcos3x)/(ax^n) = lim[3/4 - (1/4)(cos6x+cos4x+cos2x)]/(ax^n) (0/0)= lim(1/2)(3sin6x+2sin4x+sin2x)]/[anx^(n-1)] (0/0)= lim(9cos6x+4cos4x+cos2x)]/[an(n-1)x^(n-2)] = 1n-2 = 0, an(n-1) = 14, n = 2, a = 7
n=2a=7