证明:3^(n+2)-2^(n+2)+3^n-2^n =[3^(n+2)+3^n]-[2^(n+2)+2^n] =[3^2*3^n+3^n]-[2^3*2^(n-1)+2*2^(n-1)] =10*3^n-10*2^(n-1) =10*[3^n-2^(n-1)] 能被10整除. 希望对你有所帮助,望采纳,谢谢